
Fabryq: Using phones as smart proxies to control

wearable devices from the Web

Mozziyar Etemadi
Will McGrath
Shuvo Roy
Björn Hartmann

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-134

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-134.html

June 12, 2014



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
12 JUN 2014 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2014 to 00-00-2014  

4. TITLE AND SUBTITLE 
fabryq: Using phones as smart proxies to control wearable devices from
the Web 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Wearable ubiquitous computing devices are often size- and power-constrained, which prevents them from
directly connecting to the Internet. A common pattern is therefore to interpose a smart phone as a router
and to deliver graphical user interfaces for such hardware. However, implementing the entire pipeline
from embedded device through a phone to the Internet and back requires a disjoint set of languages and
APIs accessible only to experts. In this paper, we present fabryq, a new platform that handles the
complexities of creating such applications. fabryq is especially aimed at supporting field deployments of
prototype ubicomp hardware, e.g. for new interactive health devices. fabryq turns a smartphone into a
bridge that connects the short range wireless technology of Bluetooth Low Energy (BLE) with our cloud
service via the Internet. We introduce a protocol proxy programming model to find and control peripheral
devices from Javascript and describe a UI pushdown technique to render user interfaces on phones within
reach of peripheral devices. To illustrate the utility of our platform, we also implement fabryq a
breadboard prototyping platform similar to Arduino with functionality exposed over a JavaScript API
built exclusively with fabryq. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Copyright © 2014, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work was supported in part by the TerraSwarm Research Center, one
of six centers supported by the STARnet phase of the Focus Center
Research Program (FCRP) a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. Additional support was
provided by a Sloan Foundation Fellowship and a Google Research Award.



fabryq: Using phones as smart proxies to control wearable
devices from the Web

Mozziyar Etemadi1,2 Will McGrath1,3 Shuvo Roy2 Bjoern Hartmann1

1UC Berkeley SWARM Lab
490 Cory Hall, Berkeley, CA
{mozzi,bjoern}@berkeley.edu

2UCSF Bioeng. & Ther Sci
1700 4th St., SF, CA
shuvo.roy@ucsf.edu

3Stanford CS
353 Serra Mall Stanford, CA

wmcgrath@stanford.edu

ABSTRACT
Wearable ubiquitous computing devices are often size- and
power-constrained, which prevents them from directly con-
necting to the Internet. A common pattern is therefore to
interpose a smart phone as a router and to deliver graphical
user interfaces for such hardware. However, implementing
the entire pipeline from embedded device through a phone
to the Internet and back requires a disjoint set of languages
and APIs accessible only to experts. In this paper, we present
fabryq, a new platform that handles the complexities of creat-
ing such applications. fabryq is especially aimed at support-
ing field deployments of prototype ubicomp hardware, e.g.,
for new interactive health devices. fabryq turns a smartphone
into a bridge that connects the short range wireless technol-
ogy of Bluetooth Low Energy (BLE) with our cloud service
via the Internet. We introduce a protocol proxy programming
model to find and control peripheral devices from Javascript;
and describe a UI pushdown technique to render user inter-
faces on phones within reach of peripheral devices. To illus-
trate the utility of our platform, we also implement µfabryq,
a breadboard prototyping platform similar to Arduino with
functionality exposed over a JavaScript API built exclusively
with fabryq.

Author Keywords
Toolkits; ubiquitous computing; swarm devices; prototyping.

ACM Classification Keywords
Human-centered computing– User interface toolkits

INTRODUCTION
In the predominant vision of ubiquitous computing, all kinds
of devices, from large to small, become smart and networked.
One important class of ubiquitous computing devices are
small, wearable sensors — for example those used in med-
ical and fitness applications. Unfortunately, these cannot just
be connected to the Internet (e.g., via WiFi) because of size
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and power constraints. In practice, therefore, wearable ubi-
comp devices are often constructed using a three-level archi-
tecture consisting of: 1) a very energy efficient, embedded
low power device with a short range radio; 2) a user’s mobile
phone, which shows a user interface but also acts as a router
from body-area networks to the Internet; 3) server code for
aggregating data and reasoning across multiple users and de-
vices. We refer to this such applications as MPC (eMbedded–
Phone–Cloud) apps (see Figure 1). For example, the FitBit
fitness tracking device monitors a user’s motions and period-
ically relays information to a companion application running
on the user’s mobile phone (or PC), which in turn communi-
cates with servers that the FitBit company maintains. Build-
ing and maintaining such multi-language, multi-platform dis-
tributed systems is complex, error-prone, and requires skills
in several diverse fields. Thus, experimentation in deploy-
able, mobile wearable devices is largely reserved to experts,
and implementation cycles are long and complex, which pro-
hibits rapid prototyping. While research has introduced pro-
totyping toolkits that significantly increase the speed of de-
sign explorations [9, 8, 18], these toolkits often make power
or connectivity tradeoffs that restrict their use to lab settings
or stationary, plug-in products.

In response to these issues, we introduce fabryq, a framework
that facilitates the creation of new wearable Ubicomp devices
by handling the complexities of creating new mobile device,
server, and networking code. Specifically, fabryq takes the
form of a mobile application and cloud service. The mobile
application turns an ordinary smartphone into a bridge that
connects the short range wireless technology of Bluetooth
Low Energy (BLE) with our cloud service via the Internet.
We chose BLE because it is the single short range wireless
technology that is ubiquitously available on modern smart
phones and can thus be widely employed. fabryq applications
are written in Javascript and run in a web browser. fabryq in-
troduces a protocol proxy programming model — developers
write BLE protocol calls in Javascript as if the target device
were locally connected and always available. The fabryq ar-
chitecture then finds a mobile phone within radio reach of the
target BLE device; passes the command(s) through the phone
to the target device, and returns data to a the web application.
This allows the creators of new devices to focus on writing
the devices’ firmware and creating new applications with the
data from the devices, rather than writing complex and error-
prone networking code (see Figure 2).
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Figure 1. An example MPC application distributes logic and user inter-
action across embedded device, mobile phone and a cloud server.
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Figure 2. With fabryq, developers use off-the-shelf bluetooth devices or
write firmware that exposes devices’ inputs and outputs over Bluetooth;
and high-level application logic in Javascript. The fabryq framework
manages finding the desired hardware device and a mobile phone within
range, and handles all message marshaling.

Our approach deals gracefully with situations where a BLE
device may move into and out of the range of a mobile client
device. The star network topology of BLE guarantees de-
terministic execution of commands in the correct order. fab-
ryq handles the connection management and networking that
make this abstraction possible in the background. User in-
terfaces for fabryq applications such as visualizations of col-
lected data are also authored in JavaScript, and they can be
shown either on the web, or inside the fabryq application on a
mobile device. For this purpose, fabryq introduces a UI push-
down model where embedded data updates on the server can
trigger the display of interfaces on the phone that was respon-
sible for collecting the data.

fabryq makes it easier for developers to work with both ex-
isting off the shelf BLE devices and custom devices of their
own design. To illustrate fabryq’s ability to interface with
off-the-shelf devices, we demonstrate a heart rate visualiza-
tion application from an off-the-shelf BLE heart rate monitor.
To demonstrate the robustness of fabryq in developing appli-
cations for use with highly custom BLE devices, we present
µfabryq, a custom BLE device paired with a JavaScript API
written on top of fabryq that make some of the most use-
ful features of embedded processors such as analog to dig-
ital converters (ADCs), interrupts, digital input/output pins
(GPIO), pulse width modulation (PWM), and a serial periph-
eral interface (SPI) available to web programmers via fab-
ryq. This firmware mirrors the programming model of popu-
lar “maker” platforms such as Arduino, but offers the benefit
that applications can be distributed across many wearable de-
vices in many locations. In order to both validate fabryq and
demonstrate its utility, we will describe the devices created
by students using µfabryq during a hackathon.

RELATED WORK
fabryq relates to prior work in ubicomp prototyping toolkits,
research on working with sensor data on mobile phones, ex-
perience logging, and “Internet of Things” networking.

Ubicomp Prototyping
HCI research has contributed systems for rapid prototyping of
Ubicomp devices and systems [8, 9, 4, 18]. While some fo-
cus exclusively on self-contained interactions, others such as
.NET Gadgeteer [18] and Shared Phidgets [15] explicitly of-
fer network connectivity to create Internet-connected devices.
However, these devices tend to be tethered and not optimized
for power consumption, so they cannot easily be deployed in
mobile scenarios outside the lab. We focus on sensing sys-
tems that are easy to write and prototype with, yet can be
given to users without supervision and deployed in real world
scenarios for weeks to months at a time.

Connecting Sensors to Mobile Phones
A number of projects aim to make it easier to connect external
devices and sensors to smart phones and use them in applica-
tions. iStuffMobile [2] augments existing phones with new
sensors – for development speed, sensor mapping logic runs
on a nearby desktop computer, limiting deployment options.
Amarino [12] allows designers to access events occurring on
a mobile phone from an embedded platform. HiJack [13]
can power and exchange messages with an embedded mi-
crocontroller through a phone’s audio jack. Open Data Kit
Sensors [6] is an application framework that introduces ab-
stractions to simplify the connection of multiple sensors with
different communication channels and APIs (e.g., wired and
Bluetooth) to a single mobile device. Dandelion [14] gener-
ates both smart phone and sensor node binaries from a com-
mon source and then uses remote method invocation to call
sensor code from the phone.

In contrast to these projects, fabryq uses the phone as a smart
router to relay commands from a Web server to BLE devices.
This allows developers to change their sensor querying code
at any time without having physical access to the phone, and
applications can span multiple phones. fabryq is also agnostic
to which phone is connected to which sensor—only commu-
nication between server and sensor matters.

Experience Logging
Experience sampling and logging tools such as Momento [5]
and MyExperience [7] aim to capture a user’s daily experi-
ence “in the wild” outside of the lab. These goals are aligned
with our focus of creating prototypes that can be deployed
with users and monitored remotely for extended periods of
time. MyExperience, for example, allows capturing of sensor
data based on declarative rules; data is automatically synced
to a server. The architecture supports addition of external sen-
sors (e.g., Bluetooth devices) by writing drivers for a partic-
ular phone, but this is difficult. The principal difference is
fabryq’s focus on supporting custom peripheral devices.

IoT Networking
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Connecting resource-constrained embedded hardware to In-
ternet servers is also a concern of “Internet of Things” re-
searchers. One way to provide IP packet support to low-
energy embedded devices is through IEEE802.15.4 networks
using “6LoWPAN” (IPv6 over Low Power Wireless Personal
Area Networks [1]). Alternatively, devices such as the XBee
Internet Gateway marshall traffic between a local area net-
work and the Internet. The main difference to much of this
work is that it presupposes additional networking infrastruc-
ture which is not generally available yet. We instead target
ubiquitous smart phones and their data networks.

ElectricImp WiFi modules aim to lower the threshold for de-
veloping Internet-connected appliances [11]. Like fabryq,
Imp uses a hosted server that handles many lower-level net-
working tasks. However, Imp devices require direct WiFi
access—power requirements make it infeasible to use them
for mobile, wearable deployments.

MOTIVATING APPLICATIONS
To inform the design of fabryq, we surveyed the emerging
market of hardware smartphone “accessories.” Fitness track-
ers such as the FitBit, Misfit Shine, or ActiveReplay’s Trace
as well as devices such as the Automatic vehicle data link tend
to follow a similar pattern: they use MEMS sensors and min-
imal display on device and they a smart phone to display the
main UI to the user. They also use web backends to store, pro-
cess, or share data e.g., to allow users to compete on daily step
counts. Our work is also motivated by a collaboration with
medical researchers at a local medical center and their needs
for wearable patient monitoring devices (see Figure 3). These
devices generally require small physical size and weight but
battery life on the order of weeks or months so they can be
given to patients without requiring recharging or other man-
agement. Researchers want to send patients home with these
devices and remotely track gathered sensor data at their in-
stitution. Such deployments may require fabrication of a few
dozen identical devices. Accordingly, a framework should
facilitate deployment of prototype code to multiple users.

Finally, we draw inspiration from experiences gathered teach-
ing the design of integrated interactive hardware/software de-
vices at our institution. While teams of motivated undergrad-
uate and graduate students can create working prototype de-
vices such as the ones shown in Figure 4, much of the im-
plementation difficulty lies in working with multiple differ-
ent networking technologies and protocols simultaneously;
managing intermittent wireless connections; and doing this in
multiple different programming languages on different plat-
forms (embedded, mobile, web) with different conventions,
data encoding schemes, etc.

Design Guidelines
Common patterns in our device survey (Figure 5) yielded the
following design guidelines:

Smartphone as proxy A modern smartphone is the one
piece of infrastructure that can be assumed to be present.
Therefore, leverage the smart phone as a proxy from the
local, body-area network to the Internet.

CBA

Figure 3. Three motivating wireless medical devices: A) A retainer that
tracks wearer compliance using a built-in temperature sensor. B) A chest
compression brace that tracks applied pressure over time. C) A water
mug that tracks liquid consumption throughout the day.

CBA

Figure 4. Example devices from our class: A) A wireless barrel gauge
for distilleries and wineries; barrel readings are aggregated online. B)
A toy to support literacy education; play statistics are collected on the
phone and online. C) A car dongle that streams driving telemetry data
to the phone and compares driving behavior on a central server.

Consumer Devices

Embedded
Sensing Display

Phone
UI

Relay
to cloud

Server
Aggregation/
Reporting

Web UI

Medical Devices

Student Projects
Barrel Gauge — — —

Driving Suggestions —

Retainer
Smart Water Bottle

—
—

— —

FitBit

Figure 5. Features of some motivating examples. fabryq focuses on sup-
porting embedded sensing, relaying data through a phone, and aggre-
gating and displaying info on the Web (green columns).

Prototyping “in the wild” Enable prototyping of wearables
that can be taken outside of the lab and that can run for at
least 24 hours, but ideally weeks or months.

Multiple devices Facilitate development and management of
multiple identical prototypes that can be distributed to a
group of users (e.g., patients for feasibility studies)

Display Enable developers to show collected data and other
user interfaces both on the web and on a phone.

Abstract networking details Shield developer from net-
work connection management and data transfer details.

Lower threshold, high ceiling Enable users who have lim-
ited programming experience (e.g., clinical researchers) to
write simple data collection scripts in a single language;
enable experts to create new, complex devices.

Conversely we chose to avoid supporting the following cases:

No low-latency, high-throughput apps We focus on work-
ing with intermittently read sensor data where milliseconds
of latency are not important.

No offline operation without a cloud server We target pro-
totype deployment where a designer/experimenter is still
in the loop; we do not target the scenario of BLE devices
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talking to phone applications without code running in the
cloud.

FABRYQ ARCHITECTURE
fabryq’s core is an abstraction of the Bluetooth Low Energy
(BLE) protocols. We first briefly introduce some BLE ter-
minology necessary for explaining the architecture. We then
introduce a scenario that demonstrates how a developer writes
and deploys a fabryq-enabled application. We then describe
the fabryq implementation that enables this workflow.

BLE fundamentals
BLE is a wireless protocol for communication between a cen-
tral device (i.e., a mobile phone) and one or more periph-
eral devices (i.e., wearables). Peripheral devices expose BLE
characteristics — short, named pieces of information (typi-
cally 1-20 bytes) similar to variables. Central devices can can
perform three operations on characteristics: GET, SET, and
NOTIFY. A GET signifies that the BLE central device would
like to retrieve the contents of the characteristic from the BLE
peripheral. A SET means that the BLE central would like to
modify the contents of the characteristic. A NOTIFY signi-
fies that if the value of the characteristic should change on the
peripheral, the central would like to be notified of this.

Operations happen at a set connection interval, a precise time
window when the central and peripheral have decided to com-
municate. Though it is beyond the scope of this work, the
connection interval is critical to maintaining deterministic
power consumption—a longer interval means less data can
be communicated but less power is used. By adjusting the in-
terval, a battery life of greater than one year can be achieved
from a coin cell battery: one of the hallmarks of BLE periph-
erals.

The set of characteristics of a device is described in a Generic
ATTribute profile (GATT). The peripheral device is also
known as the GATT server; the central device as the GATT
client. Characteristics are identified by universally unique
identifiers (UUIDs)—four digit UUIDs are reserved by the
Bluetooth Special Interest Group (SIG) for common use
cases, and 128-bit UUIDs are used for custom, developer spe-
cific characteristics. Characteristics are further grouped by
belonging to services, which are collections of characteristics.
A particular BLE peripheral often contains multiple services,
for example, a “device identification service” (0x180A) and
a “heart rate service” (0x180D) would be typical of a com-
mercially available heart rate monitor. Characteristics and the
services they belong to make up the “characteristic tree.” A
more detailed description of BLE can be found in [10, 3].

Scenario: how to write and deploy a fabryq app

Developer facing fabryq: defining the application configuration
fabryq enables application developers to work with commer-
cial off-the-shelf devices (with defined behavior exposed in
4-digit UUIDs) and novel, developer-defined devices (with
custom firmware and custom characteristics that use 128-bit
UUIDs). We now present the workflow for writing and de-
ploying a fabryq-enabled web application in either case.

Object Type Instance
App App Type App Install

BLE Peripheral Device Type Virtual Device
Table 1. Types and instances in the fabryq application configuration
interface. Instances are created in a “user portal” whereas types are
created in a “developer portal.” Types listed in italics are identified by
either a standard (4-digit) or custom (128-bit) BLE UUID. Other types
and all instances are identified by fabryq-specific identifiers.

Application developers must take two major steps: first, they
define the BLE device requirements to run their application
using the fabryq application configuration interface. Second,
they then write application code (using the fabryq JavaScript
API) that references this hardware configuration profile. For
example, a hypothetical HydrateForHeartHealth (HFHH) ap-
plication may track a user’s liquid intake over the course of a
day and correlate it with heart rate variability. It may require
information about liquid level in a smart cup (a custom de-
vice also created by the developer) and data from a heart rate
monitor (a commercial device).

fabryq application configuration requires developers to oper-
ate at a level of abstraction because the defined application
should be able to run for multiple users and multiple devices
(and, multiple applications may need to use data from the
same device). In our running example, clinical researchers
may want to give smart cups and heart rate monitors to two
dozen patients—each patient’s data will be collected by an in-
stance of the HFHH application that communicates with par-
ticular hardware devices. In other words, while application
developers define the hardware requirements to run their ap-
plication (e.g., the application requires BLE devices that ex-
pose heart rate and temperature), it is only the end user who
will associate their particular hardware device with the appli-
cation (i.e., their smart cup and their commercial Heart Rate
monitor). Therefore, in the fabryq architecture, developers
specify abstract application types that require abstract device
types. This is done in the fabryq application configuration
interface and will now be explained in more detail.

Our HFHH developer, knowing that she would like her ap-
plication to use both an off-the-shelf heart rate monitor and
a custom smart cup that she has also made, begins the de-
velopment process by entering the information for her fabryq
application. Identification in the application configuration in-
terface is performed using a two-tiered system of “types” and
”instances” which are listed in Table 1. Specific elements of
application configuration are as follows. Device types are a
collection of service types and characteristic types (the char-
acteristic tree discussed previously, but abstracted as to not
imply a particular physical instance of a device). Analogous
to device types, application types are containers of device
types—they define the peripheral requirements for an appli-
cation. These relationships are depicted in Figure 6.

With these definitions in mind, our HFHH developer enters
the heart rate monitor into the fabryq application configu-
ration interface as in Figure 7. She creates a new device
type and identifies it as a generic branded “Cheap HR mon-
itor.” Next, she links the heart rate service type and heart
rate characteristic types (both BLE standards) to the device
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Figure 6. Overview of fabryq application configuration. Characteristic
types are contained inside service types, which are contained inside de-
vice types. Application types are defined by a list of device types they
require. Virtual devices are real-world realizations of device types; ap-
plication installs require one virtual device for every device type listed
for its application type.

type. She then repeats the process for her smart cup, this time
(not shown) first defining custom service and characteristic
types, then linking it to her smart cup device type. While
these custom services and characteristics depend entirely on
the firmware running on the smart cup, an example custom
service may be a “water consumption” service with a charac-
teristic of “liters drank today.”

She now proceeds to add the application type, named HFHH.
In a similar interface to the device type tree (not shown), the
application type is defined and linked to device types. In this
case, the HFHH application type is linked to the “Cheap HR
Monitor” type and the “Smart Cup” type. The application is
now fully configured in fabryq and our developer is ready to
write code that interacts with the two device types she has
required. She employs the fabryq JavaScript API (details
of which are discussed in a subsequent section) to interact,
through fabryq, with the server’s virtual representation of the
required peripherals as if they were “always” connected to the
end user’s web browser. fabryq will queue her commands and
push them down to the actual devices when they are available.

Figure 7. fabryq application configuration interface: characteristic
types, service types, and device types can be defined and linked together.
Here, a developer defines a Heart Rate Monitor device type (red) which
exposes a standard Heart Rate service (green) and characteristic (blue),
for use in their application. Data are stored in a simple MySQL backend.

Figure 8. Screenshots of the fabryq web portal. (left) the user indicates
they have devices of type “Cheap HR monitor” and “SmartCup” by cre-
ating virtual device of those types. (right) The user installs the HFHH
app and associates it to a virtual device.

User facing fabryq: unboxing and running the application
A user of a fabryq-enabled web application must perform
three major steps: first, they must install the “fabryq mo-
bile” iOS application on all of the iOS devices they desire
to use to “connect” their BLE peripherals to fabryq. This
step happens once per iOS device, regardless of the number
of fabryq-enabled applications being run. Second, they must
indicate possession of their peripherals and “install” the web
applications they desire: both of these actions take place on a
website referred to as the “fabryq web portal.” Finally, they
must “run” the web application by navigating to the devel-
oper’s web application URL. Upon the first run of the web
application, all iOS devices that have never connected before
to the peripheral of interest will have to connect with and reg-
ister the id of the target peripheral, through user interaction
in the fabryq mobile application. Steps two and three of the
above summarized process are now explained in more detail.

Following our example scenario, a user has received the de-
veloper’s smart cup and a generic heart rate monitor, and
would like to use the developer’s application for the first time.
First, the user will “install” the HFHH application on the fab-
ryq web portal (Figure 8). Next, the user will indicate that
he or she owns the peripherals by adding them in the virtual
devices tab. Then, they will associate those devices with the
new application install, indicating to fabryq that when they
“run” this instance of the HFHH application, they would like
it to interact with those two exact peripherals.

Next, assuming fabryq mobile is already installed on the
user’s iOS device(s), the user points his or her web browser1

to the developer’s application. The very first time the appli-
cation is run, an identification request is made to the new vir-
tual device created when the user added their new device on
the web portal. The user’s fabryq mobile application, see-
ing this request and knowing that they have never physically
1In our current implementation, the web browser must not be on the
same phone the one with fabryq mobile installed, because fabryq
mobile runs in the foreground. This is addressed in the limitations
section.
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Figure 9. Possible application configurations enabled by Fabryq: A)
single user, single device. B) A user’s peripheral accesses fabryq through
more than one mobile device in a “roaming” pattern C) Users who agree
to jointly run an application can also act as ”data mules” and pick up
data from environmental sensors whenever they walk by such a sensor.

connected to this virtual device before, will initiate a BLE
scan and query the user to identify which physical peripheral
corresponds to this virtual device. For every instance of the
fabryq mobile app, once the user selects the peripheral, sub-
sequent requests from fabryq will pass through directly to the
peripheral without user intervention. The details of this im-
plementation are depicted in Figure 10 and discussed in more
detail in a subsequent section.

In the simplest case, one application requires one peripheral
and the user has one (or more) iOS devices (each running
fabryq mobile) that allow data to flow from application to
peripheral (Figure 9A). One application may also allow the
user to “roam” with their BLE peripheral, periodically com-
ing into contact with one of their multiple iOS devices, as in
Figure 9B. Finally, users may opt to “share” their iOS de-
vice’s BLE radio with other users. In this configuration, other
users would be able to connect their peripherals to fabryq us-
ing iOS devices that are not in their possession. As a simple
example, a cyclist’s heart rate monitor could connect to his
heart rate application while he cycles without an iOS device,
provided he comes in contact with other user’s devices. De-
picted in Figure 9C, this “crowd sourced BLE internet access”
has been implemented in specific consumer applications such
as Tile 2.

Having presented an overview of the workflow to write and
run a fabryq-enabled web application, we will now discuss
the specifics of the fabryq implementation.

fabryq Implementation
The function of fabryq is analogous to that of an IP router:
fabryq commands (GET, SET, NOTIFY) are requested of
the server by the JavaScript application code running in
the browser and “routed” to the appropriate BLE peripheral
through the various fabryq mobile apps (installed on iOS de-
vices), based on which user is currently running the applica-
tion and what virtual devices they have associated with that
application install. Beyond routing BLE commands, fabryq
also has the functionality of routing a user interface to a mo-
bile device connected to a BLE peripheral. The main chal-
lenge in implementing such a router is overcoming three pri-
mary limitations of the bluetooth low-energy protocol:

2http://www.thetileapp.com

1. Inconsistent identification of a user’s peripheral devices
across all of their mobile devices (e.g., using one heart rate
monitor with several phones and/or tablets). In the case
of iOS (the only platform that we have so far used to im-
plement the fabryq mobile app), a unique identifier is gen-
erated for every bluetooth peripheral for every iOS appli-
cation, that is to say, three applications connecting to the
same peripheral (even on the same device) will have a dif-
ferent unique identifier for that peripheral. This behavior
allows some high security applications like car keys and
bank cards but presents a major difficulty in managing pe-
ripherals across applications and devices.

2. Poor correlation of command requests with responses.
In all current BLE central implementations, callbacks from
GET, SET, and NOTIFY commands are shared and can re-
turn in a different order than their initiating calls. While
these callbacks do contain the characteristic UUID that
is being queried, if one is repeatedly calling GET, SET,
and/or NOTIFY on a single characteristic, maintenance of
proper callback order becomes a formidable task for the
developer that must be reimplemented in a highly custom,
characteristic-specific manner for each application.

3. Redundant calls to rediscover characteristics. In all cur-
rent BLE central implementations, the characteristic tree
must be traversed over the wireless link, down to the char-
acteristics of interest on each connection. That is to say, on
each connection, even if a characteristic is known to exist
in a particular service, the service and characteristic must
first be “discovered” over the wireless link prior to exe-
cuting one of the three BLE commands. Ideally, a priori
knowledge of the characteristic tree is known by the mobile
application to ensure minimum traversal of the tree, which
readily leads to non-portable “hard coding” of character-
istics. The alternative is power inefficient, over-traversal
of the tree. We address this BLE limitation in fabryq by
downloading the tree from the application configuration,
ensuring consistent, minimum traversal.

The fabryq mobile application and its JavaScript API have
been implemented specifically to overcome these limitations.

fabryq mobile Implementation
The primary function of the fabryq mobile application is to
execute commands (i.e. GET, SET, NOTIFY) requested of
characteristics of virtual devices. Because of BLE’s periph-
eral identification challenges, the fabryq mobile app must
know which physical device corresponds to which virtual de-
vice for every mobile device.

To overcome this limitation we have devised the following
control flow, shown in Figure 10, resulting in minimal ex-
tra user interaction with no additional developer code. Com-
mands (i.e. GET, SET, NOTIFY) to be performed on virtual
devices are placed in a server-stored “command log” by calls
to the fabryq javascript API (detailed in the next section). If
commands are found for the user’s virtual devices, the fabryq
mobile application first determines if it has an OS-specific
BLE-identifier for that virtual device. If it does, the action is
performed and the result returned to the command log. If not,
and there are nearby, unknown peripherals that are exposing
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Figure 10. Control flow for fabryq mobile. If commands (i.e. GET,
SET, NOTIFY) are found for the logged-in user’s virtual devices, fab-
ryq mobile first determines if it has an OS-specific BLE-identifier for
that virtual device. If such a “link” between OS-specific identifier and
virtual device exists, the action is performed and the result returned to
the database. If not, and there are nearby, unknown peripherals that are
exposing the characteristic type to be acted upon by the task, the user
will be queried with the “friendly name” of the virtual device obtained
from the application configuration, and a list of nearby BLE peripher-
als. If the user indicates one of these peripherals is a match, it will be
stored permanently and the action performed.

the service type needed by the task, the user will be queried
with the “friendly name” of the virtual device obtained from
the application configuration, and a list of nearby BLE pe-
ripherals. If the user indicates one of these peripherals is a
match, it will be stored permanently (on the same SQL server
as the command log) and the action will be performed.

By decoupling the act of requesting GET, SET, and NOTIFY
commands from the act of performing them, we also address
the other two BLE-specific limitations: excess traversal of the
characteristic tree and ordering of commands. The former is
prevented because the for a given device type in the fabryq ap-
plication configuration, the entire characteristic tree is known
prior to the iOS device establishing a connection, without any
“hard coding” of the UUIDs. Thus, upon connecting to a de-
vice, the bare minimum traversal of the characteristic tree au-
tomatically takes place, and the characteristics are available
for direct query.

The latter is addressed by the nature of the design: the com-
mand log itself is in execution-order. Each time fabryq mo-
bile is to return a result from an action, it only has one place
to do it: in the correct spot in the log. As mentioned ear-
lier, a limitation to BLE API callbacks from GET, SET, and
NOTIFY commands on mobile phones is that they happen
in an undetermined order and are often fixed to be the same
callback function. Reconciliation of these callbacks with the
appropriate row in the log table represented both the most
formidable challenge and greatest benefit in developing fab-
ryq, and in fact is a defining feature of the JavaScript API.

Additional fabryq mobile command: SHOWURL
In some instances, the developer would like to interact with
the user on the fabryq mobile application directly as opposed
to the web browser. For this purpose, we created a fourth fab-

ryq command without a BLE counterpart: SHOWURL. Like
the other commands, SHOWURL requires that one of the user’s
fabryq mobile applications be connected to the particular pe-
ripheral. However, instead of passing a command over BLE,
it shows a URL on the fabryq mobile application itself: we
term this UI pushdown. In this way, peripheral-specific UI
can appear on the mobile device hosting it. Since SHOWURL
is simply opening a web page, the full complement of fabryq
JavaScript API calls are also available.

Implementation of fabryq javscript API
We have implemented a JavaScript API to enqueue and de-
queue commands and poll their results. These commands are
intended for BLE peripherals but originate on the cloud: our
peripheral proxy model. Each GET, SET, or NOTIFY has
an explicitly defined callback that is passed to the originating
JavaScript function call (and per common JavaScript coding
practice can be defined in-line). A demonstrative use-case for
the API is as follows.

Our example developer would like to access the heart rate
characteristic of an off-the-shelf BLE heart rate monitor for
part of her HFHH application. Having already entered in the
application configuration as described earlier, she begins to
write JavaScript code. She first obtains the fabryq applica-
tion profile object using an AJAX query. The fabryq appli-
cation object contains a list of all virtual devices accessible
to the application, indexed by device type. Recall that this
was a major design requirement: the developer does not need
knowledge of particular, physical devices, but only their type.
In this example, she would like her application to display the
current user’s heart rate on the screen using a GET command.
Using fabryq’s JavaScript API, this is one function call with
embedded callback lambdas:
add_get_action(
fabryq_object[_DEVICE_TYPE],
_HR_SERVICE,
_HR_CHARACTERISTIC,
_POLL_INTERVAL,
_TIMEOUT,
function onCompleted(action)
{
if(action.result==’null’) {
//update the screen to indicate the
//heart rate monitor could not be located

}
else {
//update the screen with
//action.result (the heart rate)

}
},
function onQueued(action) {},
install_id

);

The DEVICE TYPE, HR SERVICE, and the
HR CHARACTERISTIC constants are already known

by the developer as she recently entered them into the fabryq
application configuration interface. POLL INTERVAL
defines how often and POLL TIMEOUT defines how long
the command log will be polled by the browser for the result
of the action. A timeout indicates that the peripheral could
not be found by any of the user’s fabryq mobile applications.
The onCompleted callback occurs after the command has
been successfully performed or timed out. The onQueued
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Figure 11. Demonstrative fabryq application showing the user’s heart
rate obtained from an off-the-shelf BLE heart rate monitor and auto-
matically plotted on the currently connected fabryq mobile application.

occurs after the command has been placed in the command
log—this is useful in cases where a number of commands
must be executed in a particular order, but subsequent com-
mands do not depend on the results of preceding commands,
thus they can be immediately queued. The install id
is populated when the user logs into fabryq and runs the
application. SET and NOTIFY commands are similarly
implemented and not discussed here.

The principle limitation of the JavaScript API is the require-
ment to poll the command log to discover the status of an
action. This is a limitation of our command log implemen-
tation: a SQL table with simple REST interface. Trading off
simplicity and portability for latency, future implementations
of the command log interface could utilize WebSockets or
other push notification schemes to allow for instant callbacks
to JavaScript as soon as fabryq mobile has interacted with the
BLE peripheral and updated the log.

The core fabryq implementation was written in about 4500
lines of code split across iOS (fabryq mobile); PHP and SQL
(fabryq server) and Javascript (fabryq API).The heterogeneity
of the codebase exemplifies the complexity of development
that fabryq seeks to overcome.

EXAMPLE APPLICATIONS
We have created several example applications to demonstrate
working with both off-the-shelf and custom peripherals.

Example with off-the-shelf BLE device
As a demonstrative example, we created a simple fabryq ap-
plication that can plot the heart rate of a user using any off-
the-shelf heart rate monitor that exposes the standard BLE
heart rate service in real time. In addition to showing the
heart rate on the user’s web browser, the application uses the
SHOWURL fabryq command to also display the plot on the
fabryq mobile application currently communicating with the
heart rate monitor (Figure 11). The completion of the first
functional prototype of this example application took under
three hours, the majority of which was spent on the construc-
tion of the visualization. Conversely, obtaining the heart rate
data in fabryq required only two function calls, one to start
collecting the heart rate data and a second to query the server
for the history of the user’s heart rate.

End-to-end use case: µfabryq

Phone’s
BLE Stack
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Inet Stack

Embedded
BLE Stack

µFabryq
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Fabryq 
Client Lib

Fabryq Phone
Fabryq 
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JS API
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µFabryq 
Library

Developer’s 
Application

Figure 12. µfabryq offers direct access to embedded peripheral pins in
a manner similar to the popular Arduino platform. It was implemented
using Fabryq and shows the expressivity of the framework. It comprises
a BLE firmware and a JavaScript library written using the Fabryq JS
API.

fabryq JavaScript API
Function Description

add get action Request a BLE characteristic
add set action Set the value of a BLE characteristic

add notify action Receive notification of a changed BLE char.
add showurl action Show a URL on the connected fabryq mobile app.

µfabryq JavaScript API
Function Description

DigitalRead Read a pin’s binary value
DigitalWrite Set a pin’s output voltage to low or high

PinMode Set a pin to input (w/ pullup) or output
AnalogRead Read a pin’s input voltage using an ADC
AnalogWrite Set a pin’s output voltage using PWM
AttachServo Enable servomotor control on a pin
ServoWrite Set a pin’s servo to a particular location

AttachInterrupt Attach a JS function to a pin interrupt
SPIbegin Enable/configure the SPI on µfabryq

SPItransfer Perform full-duplex SPI communication
Table 2. Function list for the microfabryq JavaScript API (top) and the
µfabryq JavaScript API (bottom).

To demonstrate fabryq’s ability to simplify communication
with novel BLE devices, we created a customized BLE de-
vice with functionality resembling that of an Arduino [16].
µfabryq, shown in Figure 13, is a breadboard-able bluetooth
system-on-chip based on the BlueGiga BLE113 module. We
developed custom firmware that allows Arduino-like com-
mands to be used over BLE. For example, there is a custom
BLE characteristic that controls the output of all GPIO pins
(high or low) and another that controls the pin direction (input
or output). Using only the fabryq JavaScript API and jQuery,
we then created the µfabryq JavaScript API which essentially
maps Arduino commands to JavaScript functions, executing
them over fabryq and returning their result to the browser.
A list of these µfabryq API functions, along with the fabryq
JavaScript API functions, is in Table 2.

Custom Devices
As a preliminary test of fabryq and µfabryq, the authors con-
structed multiple prototype devices. Among them was a se-
curity device built using a Pyroelectric Infrared (PIR) sensor
and an accelerometer with a SPI interface. When the corre-
sponding script is run in a web browser, it sends commands
to the device to test and initialize the accelerometer, set an ac-
celeration threshold via an SPI command, and set interrupts
on the interrupt pin of the accelerometer and the output of
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Figure 13. µfabryq breadboard provided to participants of the
hackathon. The board contains a BlueGiga BLE113 breakout board,
a microUSB battery charger, a LiPo battery and a power switch. The
rest of the board is empty for prototypign.

the PIR sensor. Running this initialization from cloud to de-
vice takes roughly 15 seconds with some variability due to
network and server latency. Whenever the sensors are trig-
gered by a person walking by or moving the µfabryq board,
the board pushes an update to the fabryq server, where it is
polled by the web application. When the web application re-
ceives an interrupt message, it flashes a red screen. Latency
from activation to browser display is about 3 seconds.

User Experiences with µfabryq
In order to evaluate and demonstrate fabryq’s ability to con-
nect to and transmit data from a number of peripherals, we
held a 7-hour µfabryq hackathon. Attendees were expected
to leverage prior Arduino experience to create novel BLE de-
vices. Attendees were of various engineering backgrounds,
namely, Bio-, Electrical, and Mechanical Engineeering as
well as Computer Science. Twelve students in four groups
were provided with a breadboard that contained a BLE mod-
ule pre-loaded with the µfabryq firmware (see Figure 13).
An ample supply of electronics and mechanical prototyp-
ing equipment was made available. All groups success-
fully downloaded and ran the GPIO demo and the majority
collected sensor readings from a µfabryq board on a web
server, all through two fabryq mobile applications placed in
the room. Two groups went beyond small examples and
built their own custom devices. At the conclusion of the
hackathon, two groups remained and produced the following
devices, seen in Figure 14.

Heart Rate Monitor: Students connected an off-the-shelf
maker-focused photo plethysmography sensor3 to an Arduino
using the manufacturer-provided library to determine heart
rate. As a simple way to bridge the 5V Arduino and 3.3V
µfabryq board, the Arduino converted the heart rate into an
analog voltage using PWM and an RC filter. This voltage
was fed into an A/D pin on the µfabryq board, where it was
converted to a digital value and sent to the browser through
fabryq. Once on the web, the analog voltage was converted,
in JavaScript, to heart rate and displayed in a webpage.

Tic Tac Toe: Students placed a grid of push-push, on-off
switches and associated wiring on two breadboards and con-
nected this to the µfabryq board via GPIO pins. The on-off
3http://pulsesensor.myshopify.com/

Figure 14. (left) Heart rate sensor managed by an Arduino, which is con-
nected to a µfabryq board. (right) µfabryq breadboard wired to several
pushbutton switches acting as an input device.

state of each switch was pushed to the web browser using fab-
ryq, allowing for a tic-tac-toe board on the web that could be
modified using the physical switches.

Qualitative feedback
The participants appreciated µfabryq’s ability to simplify
what would otherwise be a complex networking task. Instead
of writing code for an embedded device, a mobile app, and
a server, participants were able to write functioning applica-
tions using only JavaScript in the browser. One participant
remarked, “It’s really, really easy to use, especially compared
to the complexity of what it accomplishes. I think the current
API and the general spirit of the language’s structure makes
it really intuitive to use.”

Participants spent most of their time designing and debugging
the web user interfaces of their devices. Because few were ex-
pert web developers, the final complexity of their prototypes
was limited. Nonetheless, we are encouraged by the results
of the hackathon. Although the groups faced technical chal-
lenges in interfacing, web design, and debugging, they were
all successful at communicating with the µfabryq boards. Ad-
ditionally, when asked, “On a scale of 1 to 5 how likely would
you be to use fabryq in your next project?” (where 5 was very
likely), the participants responses were positive (µ = 3.6).

The largest challenges that the participants faced involved un-
derstanding the status and failure situations of the back end
infrastructure. This suggests that exposing more fine-grained
system status when errors occur is an important usability con-
sideration for future versions of the framework.

LIMITATIONS
fabryq has some limitations inherent in its architecture as well
as shortcomings in the current implementation.

Design Limitations
Fundamentally, fabryq-enabled applications require complete
a priori knowledge of all peripheral types prior to writing
and/or running an application. This was explicitly chosen for
robustness in connectivity across multiple mobile devices and
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scalability of applications to many users and many peripher-
als. There exist a subset of applications where the peripherals
are not known, for example, an application specifically de-
signed to discover any nearby peripheral, or applications that
interact with beacons that change their identifiers for security
reasons. Such applciations are not supported.

Implementation Limitations
The current fabryq mobile application runs only on iOS, and
only in the foreground. On iOS, there are stringent require-
ments placed on background applications, such as timing lim-
itations. None of these requirements should fundamentally
limit fabryq’s current functionality, but we have not yet im-
plemented a background mode.

An additional limitation is poorly–defined command latency.
This is not a fundamental limitation; if the application con-
figuration and command log were located on the mobile de-
vice, the command latency could be readily defined. Instead,
our current implementation relies on polling to A) retrieve
command logs for fabryq mobile and B) retrieve results of
these commands by the JavaScript API. In future implemen-
tations, both of these polling mechanisms, which take place
over REST-ful interfaces, could be replaced by TCP/IP socket
schemes such as WebSockets.

Finally, in programming fabryq-enabled apps, the developer
must currently edit the application configuration in a browser
and write code in a local text editor. Testing this code re-
quires opening the application in another browser window
and having an iOS device running fabryq mobile physically
near the peripheral and presumably the developer. This yields
five points of interaction (two browser windows, a text editor,
fabryq mobile, and the peripheral) for the developer which
can become a challenge in and of itself, slowing down the de-
velopment cycle. In future versions of fabryq, some of these
points of interaction can be reduced or eliminated, e.g., by
providing an integrated workbench that unifies writing, con-
figuring and running applications, and by adding device sim-
ulation capabilities (e.g., through trace playback [17]).

CONCLUSION AND FUTURE WORK
This paper presented fabryq, a platform for rapidly writing
and deploying MPC applications that use smart phones as
proxies to control wearable devices from the Web. The de-
velopment of fabryq was guided by a survey of commercial
devices, medical wearable devices, and student projects. Two
main techniques of fabryq are the protocol proxy model of ex-
ecuting BLE protocol calls from the Web; and UI pushdown
to push interfaces from the Web to a phone. Future work on
fabryq will focus on also making the firmware layer config-
urable or updatable from the Web. Just as characteristics and
services have been abstracted into a virtual device and are
available any time, future versions of fabryq will similarly
absorb the firmware into the virtual device as part of a single
application that runs on phone, cloud, and peripheral. Fu-
ture fabryq applications will have a “complete picture” of the
tasks to be executed on the peripheral, on the phone, and on
the cloud. With this picture, individual tasks can be parceled
out to the appropriate layers, depending on available network

infrastructure, available hardware infrastructure, and the na-
ture of the tasks requested.
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